Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs
نویسندگان
چکیده
RNase III Drosha initiates microRNA (miRNA) maturation by cleaving a primary miRNA transcript and releasing a pre-miRNA with a 2 nt 3' overhang. Dicer recognizes the 2 nt 3' overhang structure to selectively process pre-miRNAs. Here, we find that, unlike prototypic pre-miRNAs (group I), group II pre-miRNAs acquire a shorter (1 nt) 3' overhang from Drosha processing and therefore require a 3'-end mono-uridylation for Dicer processing. The majority of let-7 and miR-105 belong to group II. We identify TUT7/ZCCHC6, TUT4/ZCCHC11, and TUT2/PAPD4/GLD2 as the terminal uridylyl transferases responsible for pre-miRNA mono-uridylation. The TUTs act specifically on dsRNAs with a 1 nt 3' overhang, thereby creating a 2 nt 3' overhang. Depletion of TUTs reduces let-7 levels and disrupts let-7 function. Although the let-7 suppressor, Lin28, induces inhibitory oligo-uridylation in embryonic stem cells, mono-uridylation occurs in somatic cells lacking Lin28 to promote let-7 biogenesis. Our study reveals functional duality of uridylation and introduces TUT7/4/2 as components of the miRNA biogenesis pathway.
منابع مشابه
TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation
As key regulators in cellular functions, microRNAs (miRNAs) themselves need to be tightly controlled. Lin28, a pluripotency factor, was reported to downregulate let-7 miRNA by inducing uridylation of let-7 precursor (pre-let-7). But the enzyme responsible for the uridylation remained unknown. Here we identify a noncanonical poly (A) polymerase, TUTase4 (TUT4), as the uridylyl transferase for pr...
متن کاملTUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms
Terminal uridylyl transferases (TUTs) function as integral regulators of microRNA (miRNA) biogenesis. Using biochemistry, single-molecule, and deep sequencing techniques, we here investigate the mechanism by which human TUT7 (also known as ZCCHC6) recognizes and uridylates precursor miRNAs (pre-miRNAs) in the absence of Lin28. We find that the overhang of a pre-miRNA is the key structural eleme...
متن کاملA role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B
The precise control of microRNA (miRNA) biosynthesis is crucial for gene regulation. Lin28A and Lin28B are selective inhibitors of biogenesis of let-7 miRNAs involved in development and tumorigenesis. Lin28A selectively inhibits let-7 biogenesis through cytoplasmic uridylation of precursor let-7 by TUT4 terminal uridyl transferase and subsequent degradation by Dis3l2 exonuclease. However, a rol...
متن کاملTrim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation
RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-m...
متن کاملSingle-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation.
Single-molecule techniques have been used for only a subset of biological problems because of difficulties in studying proteins that require cofactors or post-translational modifications. Here, we present a new method integrating single-molecule fluorescence microscopy and immunopurification to study protein complexes. We used this method to investigate Lin28-mediated microRNA uridylation by TU...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 151 شماره
صفحات -
تاریخ انتشار 2012